Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives
نویسندگان
چکیده
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies.
منابع مشابه
Controlling Immune Rejection Is a Fail-Safe System against Potential Tumorigenicity after Human iPSC-Derived Neural Stem Cell Transplantation
Our previous work reported functional recovery after transplantation of mouse and human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) into rodent models of spinal cord injury (SCI). Although hiPSC-NS/PCs proved useful for the treatment of SCI, the tumorigenicity of the transplanted cells must be resolved before they can be used in clinical applications. The c...
متن کاملSteps toward safe cell therapy using induced pluripotent stem cells.
The enthusiasm for producing patient-specific human embryonic stem cells using somatic nuclear transfer has somewhat abated in recent years because of ethical, technical, and political concerns. However, the interest in generating induced pluripotent stem cells (iPSCs), in which pluripotency can be obtained by transcription factor transduction of various somatic cells, has rapidly increased. Hu...
متن کاملTumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration
UNLABELLED Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iP...
متن کاملDeconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine
Many of the earliest stem cell studies were conducted on cells isolated from tumors rather than from embryos. Of particular interest was research on embryonic carcinoma cells (EC), a type of stem cell derived from teratocarcinoma. The EC research laid the foundation for the later discovery of and subsequent work on embryonic stem cells (ESC). Both ESC isolated from the mouse (mESC) and then lat...
متن کاملIntramyocardial Transplantation of Undifferentiated Rat Induced Pluripotent Stem Cells Causes Tumorigenesis in the Heart
BACKGROUND Induced pluripotent stem cells (iPSCs) are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients. METHODOLOGY/PRINCIP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017